Cyclic quotients of 2-dimensional quasi-homogene... - Japan Search model RDF

(There is only one resource "Cyclic quotients of 2-dimensional qu... (博士論文)" with description graph. Other 3 resources are in nested tables, or just refer to the source resource and have no own description)

Cyclic quotients of 2-dimensional quasi-homogeneous hypersurface...

description of https://ld.webcatplus.jp/data/507000
rdf:type<https://jpsearch.go.jp/term/type/博士論文>
rdfs:label"Cyclic quotients of 2-dimensional quasi-homogeneous hypersurface singularities"
schema:name 2"Cyclic quotients of 2-dimensional quasi-homogeneous hypersurface singularities" @en-x-guess
schema:name"2次元擬斉次超曲面特異点の巡回商" @ja
ns0:accessInfo#accessinfo
ns0:agential_:vb66433297 (an orphan bnode)
ns0:sourceInfo#sourceinfo
ns0:temporal_:vb66433298 (an orphan bnode)
schema:creator<https://jpsearch.go.jp/entity/ncname/都丸正> ( "都丸 正")
schema:description 3"分類: ndlc:UT51"
schema:description"資料種別: 博士論文"
schema:description"備考: 博士論文;博士論文 (NDLデジタルコレクション)"
schema:encodingFormat<https://ld.webcatplus.jp/ext/code/dcndl#博士論文>
schema:temporal<https://jpsearch.go.jp/entity/time/1992> ( "1992年")
schema:tocEntry"CONTENTS / p5 (0006.jp2);CHAPTER I.Cylcic Quotients of 2-dimensional Quasi-Homogeneous Hypersurface Singularities. / p1 (0007.jp2);§I-0.Introduction. / p1 (0007.jp2);§I-1.Preliminalies. / p2 (0008.jp2);§I-2.Weighted dual graph associated to(X/G,π(0)) / p4 (0010.jp2);§1-3.The condition for(X/G,π(0))to be Gorenstein and a formula for pluri-generaδ-m(X/G,π(0)),m≦1. / p11 (0017.jp2);§I-4.Cyclic quotients of simple elliptic singularities[数式]. / p13 (0019.jp2);CHAPTER II.On a Class of Normal Surface Singularities Determined by Weierstrass Pints on Algebraic Curves. / p20 (0026.jp2);§II-O.Introduction. / p20 (0026.jp2);§II-1.Generators and the embedding dimension for R(d,e). / p23 (0029.jp2);§II-2.The denning ideal of R(d,e). / p32 (0038.jp2);§II-3.Complete intersections(when the semi-group is generated by two elements) / p36 (0042.jp2);§II-4.Pin care series of R(d,e). / p47 (0053.jp2)...(more)"
18 triples ()
18 triples